Partial Molar Volume of Some Monovalent Salts and Polar Molecules in Organic Solvents

Paul G. Glugla, Jae H. Byon, and Charles A. Eckert*
Department of Chemical Engineering, University of Illinois, Urbana, Illinois 61801

Abstract

The partial molar volumes of a number of monovalent salts and polar species were measured in a series of organic solvents. The solvents included ethanol, methanol, \mathbf{N}-methylformamide (NMF), propylene carbonate, sulfolane, acetonitrile, acetone, and 4 -methyl-2-pentanone. The polar species were n-propyl bromide, n-propyl lodide, and n-propyl chloride. The monovalent salts that were examined Included LiBr, LII, $\mathrm{LiNO}_{3}, \mathrm{NaI}, \mathrm{KI}, \mathrm{RbI}, \mathrm{CsBr}$, tetrabutylammonlum iodide, tetrabutylammonlum bromide, and tetrabutylammonium perchlorate. The major observation was that the solvent effect on the partial molar volumes was most pronounced for monovalent salts. The solvent effect on the partial molar volume of the neutral solute was very small. The largest solvent effects are seen for the small monovalent salts when comparing aprotic and protic solvents. The conclusion was that the nonionic solutes do not grossly change the structure of the solvent, but the lonic solutes change the structure of the solvent significantly.

Introduction

The partial molar volumes of a number of neutral and ionic species were measured in a series of aprotic and protic solvents. The expectation was that the nature of the solvent structure could be determined by using neutral and ionic solutes as probes. If the solvent effect of a particular solute is relatively small, the structure of that group of solvents is relatively unaffected by that solute. Such solutes are considered ineffective probes. If the solvent effect is large, the nature of the structure of that group of solvents can be ranked. This information is invaluable in developing a mental picture of the structure of organic liquids even though the method does not yield direct structural information.

These data were gathered in conjunction with a kinetic study which yields similar information about the nature of an ionic transition-state species (1).

The partial molar volume is the derivative of the volume with respect to the number of solute molecules (2).

$$
\begin{equation*}
\bar{v}_{2}=\left(\partial V / \partial n_{2}\right)_{T, P, n_{1}} \tag{1}
\end{equation*}
$$

where $V=$ volume and, $n_{2}=$ number of solute molecules. The total volume (V) is simply related to the partial molar volumes.

$$
\begin{equation*}
V=\bar{v}_{1} n_{1}+\bar{v}_{2} n_{2} \tag{2}
\end{equation*}
$$

However, the quantity that is experimentally accessible is the apparent molar volume (ϕ) :

$$
\begin{equation*}
V=n_{1} v_{1}+n_{2} \phi \tag{3}
\end{equation*}
$$

where v, is the molar volume of the pure solvent. Applying eq 1 to eq 3 relates the partial molar volume to the apparent molar volume.

$$
\begin{equation*}
\bar{v}_{2}=\left(\partial V / \partial n_{2}\right)_{T, P_{1} n_{1}}=\phi+n_{2}\left(\partial \phi / \partial n_{2}\right)_{T, P, n_{1}} \tag{4}
\end{equation*}
$$

There are a number of methods that can be used to measure the apparent molar volume. Most of them are involved with measuring densities ($3-5$). Density measurements are accurate but very tedious. A second approach to the problem is to
measure the volume change on mixing. This technique is called dilatometry. Grieger et al. (6) developed a fast, accurate dilatometric technique using micrometer syringes. The two techniques that were developed and used in this effort are modifications of Grieger's original work. The first uses micrometer syringes as Grieger did. The second uses a mercury flow scheme to make injections.

The apparent molar volume of a solution is related to the volume change on mixing as follows. Before mixing the total volume of two different solutions is

$$
\begin{equation*}
v^{\mathrm{a}}+V^{\mathrm{b}}=n_{1}^{\mathrm{a}} v_{1}+n_{2}^{\mathrm{a}} \phi^{\mathrm{a}}+n_{1}^{\mathrm{b}} v_{1}+n_{2}^{\mathrm{b}} \phi^{\mathrm{b}} \tag{5}
\end{equation*}
$$

And, of course, after mixing

$$
\begin{gather*}
V=n_{1} v_{1}+n_{2} \phi \quad n_{1}=n_{1}^{a}+n_{1}^{b} \\
n_{2}=n_{2}^{a}+n_{2}^{b} \tag{6}
\end{gather*}
$$

Defining the volume change on mixing (ΔV)

$$
\begin{equation*}
\Delta V=V-V^{\mathrm{a}}-V^{\mathrm{b}}=n_{2} \phi-n_{2}^{\mathrm{a}} \phi^{2}-n_{2}^{\mathrm{b}} \phi^{\mathrm{b}} \tag{7}
\end{equation*}
$$

Rearranging eq 7 yields the experimentally important relationship for the apparent molar volume.

$$
\begin{equation*}
\phi=\frac{\Delta V+n_{2}{ }^{\mathrm{a}} \phi^{\mathrm{a}}+n_{2}^{\mathrm{b}} \phi^{\mathrm{b}}}{n_{2}{ }^{\mathrm{a}}+n_{2}^{\mathrm{b}}} \tag{8}
\end{equation*}
$$

Therefore, if the apparent molar volumes of the two starting solutions are known from previous measurements and the volume change on mixing is known, the apparent molar volume of the resulting solution can be determined.

The data of ϕ vs. concentration for nonelectrolytes are nearly linear $(6,7)$. As a result eq 4 is simple to apply to these systems. The apparent molar volumes of electrolytes are very different from those of nonelectrolytes in that they are a strong function of concentration. An empirical method discovered by Masson (8) was used to correlate ϕ vs. concentration (C) for electrolytes.

$$
\begin{equation*}
\phi=\phi_{0}+S_{v} C^{1 / 2} \tag{9}
\end{equation*}
$$

This relationship has been applied with a great deal of success by Millero $(9,10)$ and was found to apply to the systems explored in this study.

Electrolytes in acetone and 4-methyl-2-pentanone are partially associated. In this study only the partial molar volumes of the dissoclated salts were of interest. Since the dissociation constants for the salts in question are available in the literature (11), the apparent molar volumes of electrolytes in these two solvents have been corrected for ionic association making the assumption that the apparent molar volume of the associated salt is a constant. In general this is a small correction since very dilute solutions were used in most situations.

To measure the partial molar volume of a solid solute, we injected a concentrated solution. The densitles of such solutions were determined by standard pycnometric techniques. Details of the method were discussed previously (6).

Experimental Section

Materials. All of the preparations of materials were purification procedures. The recommendations of Perrin et al. (12)

Figure 1. High volume injection dilatometer.
were followed for solvent purification. When a distillation was required, it was carried out in a $1.5-\mathrm{m}$ column packed with nichrome helices. This column is equivalent to 50 theoretical plates. The reflex ratio was greater than 4:1, and the first 15% and the last 20% of the batch distillate were discarded if the temperature of the condensate did not indicate other action. When a desiccant was required for direct contact to a solvent, Linde 4A molecular sieves were used. The sieves were prepared by drying them for more than 24 h under a moderate vacuum at $200^{\circ} \mathrm{C}$. The purity of the solvents was checked by gas chromatography and by measuring the solvent index of refraction. Samples with impurities greater than 0.1% by either method were rejected.

The electrolytes used in this study were prepared by vacuum drying under modest heat (i.e., $<200^{\circ} \mathrm{C}$). It was assumed that all of the electrolytes had minor contaminants. As a result all of the electrolyte solutions were analyzed by titration. The titration process was standardized against KCl and NaCl solutions.

High Volume Injection Dilatometer. The equipment is depicted on Figure 1. The technique was developed to minimize the time and effort required for partial molar volume determination. It consists of a central flash and solute syringe. The central flask ($\sim 300 \mathrm{~mL}$) is equipped with a precision micrometer syringe so that its volume can be adjusted accurately. The precision micrometer syringes were obtained from Gilmont Instrument Co. They could measure changes in volume to $\pm 0.003 \mathrm{~mL}$.

The dilatometer is operated as follows. Solutions with known composition and apparent molar volume are loaded in the central flask and in the solute syringe. Much care was taken to avoid including gas bubbles. Solvents were boiled, and electrolytes were placed under vacuum before each use. Once loaded the flask and solute syringe was placed in a temperature bath that was controlled to $\pm 0.002{ }^{\circ} \mathrm{C}$. Before an injection the level in the capillary tube was noted accurately ($\pm 0.05 \mathrm{~mm}$). An injection was made by first enlarging the flask with the flask enlarger syringe. The fluid level in the capillary recedes. The flask is then filled to the mark on the capillary by injecting solute from the solute syringe. Care was taken to move the syringes in only one direction. The change in volume on mixing is the difference between the volume enlargement of the central flask and the volume injected. The apparent molar volume is then

Flgure 2. Schematic of high volume flow dilatometer.

Figure 3. Details of high volume flow dilatometer.
determined by application of eq 8.
This apparatus was used to measure the partial molar volumes of all of the nonionic solutes and the ionic solutes in the protic solvents. The error in partial molar volume is no greater than $\pm 0.2 \mathrm{~mL} / \mathrm{mol}$ for these systems.

High Volume Flow Dilatometer. This piece of equipment is represented schematically in Figure 2 and is shown with some physical details in Figure 3. This dilatometer was developed to optimize the accuracy of the measurement.

Measuring the partial molar volume of electrolytes in aprotic solvents requires much more precision than does making the same measurement on organic liquids because typical salts are solids and cannot be injected in their pure state. A solution of the salt in question must be used. Since electrolytes are not very soluble in aprotic organic liquids, a typical injection does not involve many ions and the resulting volume change is small.
Table I. Partial Molar Volumes $\left(\mathrm{cm}^{3} / \mathrm{mol}\right)$ at Infinite Dilution at $25^{\circ} \mathrm{C}$

			solute (molar vol, $\mathrm{cm}^{3} / \mathrm{mol}$)														
solvent	ϵ	solvent type	$\begin{aligned} & i-\mathrm{PrCl} \\ & (88.0) \end{aligned}$	$i-\mathrm{PrBr}$ (90.8)	$\begin{gathered} i-\mathrm{PrI} \\ (94.8) \end{gathered}$	$\begin{gathered} \mathrm{LiCl} \\ (20.4) \end{gathered}$	$\begin{gathered} \mathrm{LiBr} \\ (25.1) \end{gathered}$	$\begin{gathered} \mathrm{LiI} \\ (38.3) \end{gathered}$	$\begin{aligned} & \mathrm{LiNO}_{3} \\ & (28.9) \end{aligned}$	$\begin{gathered} \mathrm{NaCl} \\ (27.0) \end{gathered}$	$\begin{gathered} \mathrm{NaI} \\ (40.9) \end{gathered}$	$\begin{gathered} \mathrm{KI} \\ (53.0) \end{gathered}$	$\begin{gathered} \mathrm{RbI} \\ (59.8) \end{gathered}$	$\begin{gathered} \mathrm{CsBr} \\ (53.4) \end{gathered}$	$\begin{gathered} (\mathrm{Bu})_{4} \mathrm{NBr} \\ (300) \end{gathered}$	$\begin{gathered} (\mathrm{Bu})_{4} \mathrm{NI} \\ (320) \end{gathered}$	$\begin{gathered} (\mathrm{Bu})_{4} \mathrm{NClO}_{4} \\ (330) \end{gathered}$
propylene carbonate	65	aprotic		92.2	100.4							86.7	88.8		310	323	
sulfolane ${ }^{\text {a }}$	43	aprotic		90.2	99.4							38.7	44.7		302	335	
acetonitrile	37	aprotic		92.4	100.0		-10	1.0			4.0						
acetone	21	aprotic	89.6	92.7	100.0		-37	-31	-35		-19						
4-methyl-2-pentanone	13	aprotic		93.9	100.8									-34	226	240	314
ethanol	24	protic	88.7	91.8	98.8	-13.0	-6.2	3.6	-2.4		15.9						
methanol	33	protic		92.5	99.8	-5.1	0.8	10.7		$-3.3^{\text {b }}$	$11.8{ }^{\text {b }}$	$21.9{ }^{\text {b }}$					
N-methylformamide	182	protic		90.7	98.5	16.9	19.8	32.5			37.5	46.2					

Table II. Partial Molar Volumes at Infinite Dilution at Temperatures Other than $25^{\circ} \mathrm{C}$

solvent	solute	\bar{v}_{2}, $\mathrm{cm}^{3} / \mathrm{mol}$	temp, ${ }^{\circ} \mathrm{C}$
methanol	LiBr	4.0	15
methanol	LiBr	-2.5	35
methanol	LiBr	-9.1	50
methanol	LiI	7.7	35
methanol	LiI	1.0	50
ethanol	LiBr	-19.0	50
ethanol	LiI	-9.0	50
NMF	LiBr	21.7	50
NMF	LiI	32.8	50
sulfolane	KI	38.7	40
sulfolane	RbI	44.7	40
sulfolane	CsI	54.0	40
sulfolane	$\mathrm{Bu}{ }_{4} \mathrm{NBr}$	302	40
sulfolane	Bu NI	335	40

The apparatus developed for this experiment is capable of measuring volume changes as small as 0.0002 mL while making consecutive injections. This is 1 order of magnitude better than the high volume injection dilatometer. This level of accuracy is absolutely required for making the reported measurements.

This dilatometer relies on a mercury flow system to make injections. The solvent section of this dilatometer consists of a $700-\mathrm{mL}$ flask, a mercury reservoir, and a precision-bore capillary tube. The mercury is used for injections, and the capillary tube is used to determine the volume change on mixing. The solute section of the dilatometer consists of a $50-\mathrm{mL}$ solute flask, a 2-mL transfer bulb, and the injection valves. The transfer bulb contains enough solute for a typical injection. An injection is made by turning the valves so that the mercury in the solvent section pushes the solute from the transfer bulb into the solvent flask. The volume change on mixing is seen by a change in position of the meniscus in the capillary tube. The position of the meniscus is measured with a cathetometer. The transfer bulb can be refilled by turning the injection valves to a position where the mercury falls out of the transfer bulk into the solute flask. In this operation the mercury in the transfer bulb is replaced by solute, and the injection process can be repeated.

This method has three major advantages over the injection dilatometer. First, the volume change on mixing is read directly off the capillary. Second, the meniscus moves only as far as is required by the volume change on mixing. Third, the solute is always separated from the solvent by a slug of mercury.

The accuracy of this dilatometer depends on the reproducibility of the injection valves and on the degree of temperature control. The temperature bath used with this apparatus controlled temperature fluctuation to within $0.001^{\circ} \mathrm{C}$. The performance of the valves was tested by injecting water to water. The volume change was always less than 0.0001 mL and frequently less than 0.00005 mL . The partial molar volumes measured in aprotic solvents with this apparatus are accurate to better than $\pm 2 \%$.

Results and Discussion

Table I is a compilation of infinite dilution partial molar volumes at $25^{\circ} \mathrm{C}$. Figure 4 is a plot of a series of typical data sets for nonionic solutes showing the apparent molar volume vs. concentration. In Figure 5, typical results are shown for lonic solutes. A few measurements were made at temperature other than $25^{\circ} \mathrm{C}$. The results of these measurements are listed in Table II. All of the apparent molar volume data as a function of concentration can be found in Table III. The apparent molar volumes for nonionic solutes have been excluded from this table because the observed concentration dependence was small.

Table III. Apparent Molar Volume Data of Electrolytes

m^{a}	ϕ	m^{a}	ϕ	m^{a}	ϕ	m^{a}	ϕ
LiCl in Methanol at $25^{\circ} \mathrm{C}$				Lil in Ethanol at $25^{\circ} \mathrm{C}$			
0.00690	-4.0	0.04310	-2.5	0.00274	4.7	0.04186	8.5
0.01378	-3.7	0.0543	-2.2	0.00548	5.5	0.06263	9.3
0.02066	-3.4	2.882	6.7	0.00821	5.8	0.08340	9.9
0.03189	-2.9			0.01094	6.2	0.10422	10.3
LiBr in Methanol at $15^{\circ} \mathrm{C}$				0.01367	6.5	2.774	22.1
0.004442	4.5	0.1021	6.7	0.02091	7.3		
0.008852	4.8	0.1360	7.0	LiI in Ethanol at $50{ }^{\circ} \mathrm{C}$			
0.01324	4.9	0.1698	7.2	0.001597	-6.6	0.02000	-1.4
0.01765	5.2	0.2036	7.4	0.003189	-5.2	0.02468	-0.9
0.03431	5.5	4.495	15.2	0.00478	-4.7	0.02935	-0.3
0.06835	6.1			0.00637	-4.1	0.03401	0.2
LiBr in Methanol at $25{ }^{\circ} \mathrm{C}$				0.009789	-2.9	0.03867	0.6
0.00423	1.5	0.06544	3.4	0.01319	-2.3	1.8891	17.3
0.00846	1.8	0.09801	4.0	0.01660	-1.8		
0.01267	2.1	0.1305	4.4	NaI in Ethanol at $25^{\circ} \mathrm{C}$			
0.01689	2.3	0.1630	4.8	0.00323	17.0	0.01495	18.3
0.03283	2.8	4.275	13.8	0.00646	17.4	0.02022	18.6
LiBr in Methanol at $35^{\circ} \mathrm{C}$				0.00968	18.0	1.3868	29.0
0.00450	-1.7	0.06931	0.7	LiNO_{3} in Ethanol at $25^{\circ} \mathrm{C}$			
0.00899	-1.4	0.1037	1.5	0.00201	0.1	0.01689	4.4
0.01347	-1.2	0.1380	2.0	0.00400	1.1	0.02252	5.1
0.01795	-0.9	0.1724	2.4	0.00763	2.5	0.02815	5.6
0.02243	-0.7	4.495	12.3	0.01124	3.4	2.4085	20.8
0.03484	-0.2			LiCl in NMF at $25^{\circ} \mathrm{C}$			
LiBr in Methanol at $50{ }^{\circ} \mathrm{C}$				0.0240	17.0	0.0720	17.3
0.00237	-8.4	0.03900	-4.9	0.0480	17.2	1.8277	18.5
0.00473	-7.6	0.05058	-4.3	LiBr in NMF at $25{ }^{\circ} \mathrm{C}$			
0.00900	-7.2	0.06223	-3.9	0.0150	LiBr in 20.2	at $25{ }^{\circ} \mathrm{C}$	
0.01327	-6.8	0.07383	-3.5	0.0300		0.0450 1.1263	23.7
0.02029	-6.2	2.779	+9.2	0.030	20.4		23.7
0.02728	-5.6			LiBr in NMF at $50{ }^{\circ} \mathrm{C}$			
	LiI in Met	at $25^{\circ} \mathrm{C}$		0.0106	22.0	0.0318	22.0
0.00206	11.2	0.02261	12.4	0.0212	22.0	1.3700	22.7
0.00412	11.4	0.0287	12.6	LiI in NMF at $25^{\circ} \mathrm{C}$			
0.00784	11.8	0.0348	12.8	0.01078	32.6	0.03234	32.9
0.01154	12.1	0.0448	13.1	0.02156	32.8	0.8139	34.3
0.01523	12.2	0.0549	13.4	LiI in NMF at $50{ }^{\circ} \mathrm{C}$			
0.01891	12.3	2.5089	22.4				
LiI in Methanol at $35^{\circ} \mathrm{C}$				0.00982 0.01962	32.8 32.8	0.0491 1.2769	32.9 33.8
0.00351	8.6	0.03508	10.2	0.0294	32.8		
0.00762	8.9	0.05259	10.8	NaI in NMF at $25^{\circ} \mathrm{C}$			
0.01053	9.1	1.9717	20.1		NaI in N	at $25{ }^{\circ} \mathrm{C}$	
0.01756	9.4			0.0105	37.5	0.0315	37.5
LiI in Methanol at $50^{\circ} \mathrm{C}$				0.0210	37.5	0.7933	37.5
0.00208	Lil in Met 2.0	0.02751	4.6	KI in NMF at $25{ }^{\circ} \mathrm{C}$			
0.00419	2.4	0.03367	5.0	0.0095	46.2	0.0285	46.2
0.00628	2.8	0.03983	5.3	0.0190	46.2	0.7227	46.2
0.01007	3.0	0.05004	5.7	KI in Sulfolane at $40{ }^{\circ} \mathrm{C}$			
0.01384	3.4	0.06027	6.0	0.000290	38.5	0.000713	38.7
0.01760	3.8	0.07048	6.3 18.3	0.000433	38.9	0.000851	38.7
0.02136	4.1	2.5089	18.3	0.000574	38.8	0.000987	38.6
	LiCl in Eth	at $25{ }^{\circ} \mathrm{C}$		RbII in Sulfolane at $40{ }^{\circ} \mathrm{C}$			
0.00196	-11.3	0.01652	-7.9	0.000046	43.9	0.000225	41.7
0.00392	-10.5	0.02203	-7.5	0.00092	42.7	0.000269	41.7
0.00748	-9.3	0.03103	-6.6	0.000137	42.1	0.000312	41.6
0.01100	-8.6	2.2998	6.7	0.000181	41.9	0.000355	41.5
LiBr in Ethanol at $25{ }^{\circ} \mathrm{C}$				CsI in Sulfolane at $40{ }^{\circ} \mathrm{C}$			
0.00285	-4.7	0.06552	0.4	0.000077	53.4	0.000379	51.1
0.00568	-4.2	0.0873	1.1	0.000154	52.0	0.000452	51.0
0.00851 0.01136	-3.8 -3.4	0.109 0.1306	1.7 2.2	0.000230	51.5	0.000525	50.9
0.02190	-3.4 -2.1	2.8287	12.7	0.000305	51.2		
				$\mathrm{Bu}_{4} \mathrm{NBr}$ in Sulfolane at $40{ }^{\circ} \mathrm{C}$			
				0.000117	303.1	0.000574	301.3
0.00167	-16.8	0.01354	-12.4	0.000233 0.000348	302.3	0.000685	301.3
0.00334	-15.5	0.01710	-11.8	0.000348 0.000461	301.7	0.000795 0.000904	301.2 301.2
0.00501	-14.8	0.02065	-11.3				
0.00666	-14.3	0.02554	-10.7				
0.00833	-13.7	0.03044	-10.2	0.000089	335.2	0.000174	326.3
0.00999	-13.3	1.9463	7.9	$\begin{aligned} & 0.000115 \\ & 0.000146 \end{aligned}$	333.0 329.9	0.000201	323.7

KI in Propylene Carbonate at $25^{\circ} \mathrm{C}$				$\mathrm{Bu}_{4} \mathrm{NBr}$ in Propylene Carbonate at $25{ }^{\circ} \mathrm{C}$			
0.000049	89.2	0.000339	87.9	0.000068	310.7	0.000470	311.1
0.000098	88.3	0.000387	88.0	0.000136	310.5	0.000536	311.1
0.000147	87.9	0.000434	87.9	0.000204	310.9	0.000601	311.1
0.000196	88.0	0.000527	87.9	0.000271	311.0	0.000666	311.1
0.000244	88.1	0.000619	87.8	0.000337	311.0	0.000731	311.2
0.000292	88.1			0.000404	311.0		
RbI in Propylene Carbonate at $25^{\circ} \mathrm{C}$				$\mathrm{Bu}_{4} \mathrm{NI}$ in Propylene Carbonate at $25^{\circ} \mathrm{C}$			
0.000045	85.5	0.000313	79.8	0.000028	324.0	0.000223	321.0
0.000091	83.5	0.000357	79.6	0.000057	322.1	0.000250	321.0
0.000136	81.9	0.000400	79.4	0.000085	321.5	0.000277	320.9
0.000181	81.0	0.000444	79.4	0.000113	321.0	0.000304	320.9
0.000225	80.5	0.000487	79.4	0.000141	321.0	0.000331	321.0
0.000269	80.0			0.000168	321.0	0.000357	321.0
				0.000196	320.9		
m^{a}	c^{c}	$\phi^{\text {d }}$	ϕ^{d}	m^{a}	c^{c}	$\phi^{\text {d }}$	$\phi^{\text {d }}$
	Lil in Acetone at $25^{\circ} \mathrm{C}$			0.01522	0.01181	0.867	5.2
0.003161	0.002481	0.861	-23.8	0.02227	0.01729	0.835	5.4
0.006298	0.004944	0.803	-20.2	0.03522	0.02734	0.792	5.8
0.009431	0.007404	0.766	-18.4	0.04816	0.03738	0.760	6.1
0.01454	0.01141	0.726	-16.4	1.048			17.0
0.01964	0.01542	0.698	-15.1	NaI in Acetone at $25{ }^{\circ} \mathrm{C}$			
0.02814	0.02209	0.664	-13.7	0.00209	0.00164	0.902	-15.1
0.04440	0.03488	0.623	-11.9	0.002872	0.002254	0.881	-14.0
0.06073	0.04767	0.596	-11.0	0.00417	0.00327	0.854	-13.4
1.3024	1.0224		0.2	0.005687	0.004465	0.829	-11.6
	LiNO_{3} in Acetone at $25{ }^{\circ} \mathrm{C}$			0.00625	0.00491	0.821	-11.7
0.00238			1.3	0.008499	0.006672	0.795	-10.4
0.00475	0.003729	0.112	2.3	0.01042	0.00818	0.777	-10.4
0.00870	0.00683	0.0868	3.7	0.01309	0.01028	0.758	-9.1
0.01264	0.00992	0.0740	4.5	0.01768	0.01388	0.729	-8.0
0.01659	0.01302	0.0660	4.8	0.02079	0.01632	0.714	-8.1
0.02918	0.02291	(0.0520)	5.8	0.02531	0.01987	0.696	-6.6
0.6128	0.4810	(0.0520)	13.7	0.03114	0.02444	0.678	-6.5
	LiBr in Acetone at $25^{\circ} \mathrm{C}$			0.03293	0.02585	0.672	-5.6
				1.1771	0.9240		13.1
0.002829	0.002221	0.402	-15.9	1.3568	1.0651		13.9
0.003434	0.002696	0.378	-15.5	LiI in A cetonitrile at $25^{\circ} \mathrm{C}$			
0.005645	0.004431	0.321	-13.6				
0.006857	0.005383	0.301	-13.6	0.00395	0.003066	0.954	1.7
0.008448	0.006632	0.281	-12.0	0.00790	0.00613	0.924	2.4
0.01125	0.008831	0.256	-11.1	0.01445	0.01122	0.888	2.8
0.01255	0.009851	0.247	-11.4	0.0210	0.0163	0.860	3.2
0.01408	0.01105	0.238	-10.6	0.0276	0.02142	0.837	3.6
0.01824	0.01431	0.218	-10.2	0.0341	0.02647	0.818	4.0
0.02392	0.01878	0.200	-9.5	0.0406	0.0315	0.801	4.2
0.02811	0.02207	0.190	-9.2	0.0468	0.0363	0.788	4.4
0.04208	0.03303	0.168	-8.2	1.0163			11.9
0.04213	0.03307	0.168	-8.4		LiBr in Aceto	itrile at 25°	
0.05603	0.04399	0.154	-7.4	0.00496	0.00385	0.754	-7.7
0.06026	0.0473	0.151	-7.9	0.00990	0.00768	0.661	-7.0
0.8453	0.6636		-1.1	0.01485	0.01153	0.606	-6.5
1.1179	0.8776		-0.5	0.01980	0.01537	0.566	-6.1
	NaI in Acetonitrile at $25^{\circ} \mathrm{C}$			0.0247	0.01917	0.536	-5.8
0.00248	0.001925	0.963	4.3	0.0296	0.02298	0.512	-5.6
0.00495	0.003842	0.937	4.7	0.0345	0.02678	0.493	-5.4
0.00743	0.005767	0.916	4.8	0.0394	0.03058	0.476	-5.2
0.01148	0.008911	0.888	4.9	0.0443 0.7582	0.03439	0.462	-5.0
				0.7582			2.7

${ }^{a} m=$ molarity, $\mathrm{mol} / \mathrm{kg} .{ }^{b}{ }_{\phi}=$ apparent molar volume, $\mathrm{cm}^{3} / \mathrm{mol} .{ }^{c} c=$ molarity, $\mathrm{mol} / \mathrm{L} . \quad{ }^{d} \theta=$ degree of ionization.

The solvent 4-methyl-2-pentanone is a special case. Salts are only sparingly soluble in this solvent. Therefore, the concentration dependence of the apparent molar volume was not accessible. The reported volumes are calculated from density measurements only. The listed volumes are apparent molar volumes at 0.001 M .

The data in Table I demonstrate that the solvent effect on the partial molar volume of a nonionic solute is small. In contrast, the solvent effect on the partial molar volume of an ionic solute is substantlal. Furthermore, the partial molar vol-
umes for the nonionic solutes are very near their molar volumes. This is true for only a couple of solvents with ionic solutes.

It seems reasonable that, if a solute does not disrupt the structure (i.e., packing geometry) of a solvent, Its partial molar volume will be very similar to its intrinsic molar volume. Conversely, if a solute does change the solvent structure, it is likely that its partial molar volume will be different from its intrinsic molar volume. Of course, exceptions to both rules do exist and can easily be rationalized; however, the gross trends are irre-

Figure 4. Apparent molar volume of nonionic solutes as a function of concentration at $25^{\circ} \mathrm{C}$.

Figure 5. Apparent molar volume of some lonic solutes as a function of concentration.
futable. The nonionic solutes used in the study do not grossly change the structure of the solvents and the ionic solute can.

Substantial contractions (i.e., volumes smaller than ideal) are seen for ionic solutes in the low dielectric constant solvents. Generally contractions on mixing in dilute solutions are associated with an increase in solvent structure due to interactions
with the solute $(13,14)$. For the low dielectric constant solvents and ionic solutes, the solute-solvent interaction is much more energetic and much more long-ranged than the solventsolvent interactions. Ionic solutes cause striking contractions of these solvents. For many salts negative partial molar volumes are observed; that is, the volume after mixing is smaller than the volume of the solvent alone before mixing. The solvent structure is grossly altered with the addition of ions.

The structure of the more polar solvents are much less affected by the addition of ions. This does not necessarily mean that the solute-solvent interactions are less energetic than in less polar solvents. In fact, one would expect that the energetics of these interactions would be larger for the more polar solvents (15). The solute-solvent and solvent-solvent interactions must be similar for the more polar solvents. Therefore, the structure of the more polar solvents is much more highly developed than it is for the less polar solvents.

Partial molar volumes in dilute solutions offer a unique opportunity to probe the solvent structure with macroscopic observations. The volume of a solution is related to the solvent packing geometry and the solvent polarity. This type of information is crucial in forming a mental picture of the structure of ionic solutions in nonaqueous media. The value of this information is magnified when one realizes that the solvent effect on ionic partial molar volumes is paralleled by a solvent effect on ionic activities. The ability to adjust ionic activities by choosing a solvent has ramifications in the rates and equilbrium properties of many industrial processes and reactions. Therefore, understanding and controlling these factors is very desirable.

Lherature Cited

(1) Glugla, P. G.; Byon, J. H.; Eckert, C. A. Proc. Int. AIRAPT Conf. 6th 1977, 6, 861.
(2) Denblgh, K. "The Principles of Chemical Equillbrium"; Cambridge University Press: Cambridge, 1971.
(3) Kolthoff, I. M.; Elving, P. J.; Sandell, E. B. "Treatise on Analytical Chemstry"; Interscience: New York, 1959; Vol. I, Part I.
(4) Desnoyers, J. E.; Arel, M. Can. J. Chem. 1967, 45, 359.
(5) Persinger, H. E.; Lowen, J.; Tomplin, W. S. Am. Lab. (Fahfield, Conn.) 1974, 6, 86.
(6) Grieger, R. A.; Chaudolr, C.; Eckert, C. A. Ind. Eng. Chem, Fundam. 1971, 10, 24.
(7) McCabe, J. R.; Grieger, R. A.; Eckert, C. A. Ind. Eng. Chem. Fundam. 1970, g, 156.
(8) Masson, O. D. Phllos. Amg. 1928, 8, 216.
(9) Millero, F. J. Chem. Rev. 1971, $71,147$.
(10) Millero, F. J. J. Phys. Chem. 1986, 72, 3209.
(11) Glugla, P. G.; Byon, J. H.; Eckert, C. A. J. Chem. Eng. Data 1961, 26, 80.
(12) Perrin, D. D.; Armarego, W. L. F.; Perrin, D. R. "Purification of Laboratory Chemicals"; Pergamon Press: Landon, 1968.
(13) Hepler, L. G. J. Phys. Chem. 1957, 61, 1426.
(14) Durde, P.; Nermst, W. Z. Phys. Chem. 1694, 15, 79.
(15) Cox, B. G.; Hedwig, G. R.; Parker, A. J.; Watts, D. W. Aust. J. Chem. 1974, $27,477$.

Recelved for revlew June 29, 1981. Accepted May 18, 1982. The financlal support of the Natlonal Sience Foundation is gratefully acknowledged.

Density of 2-Butoxyethanoi from 20 to $60^{\circ} \mathrm{C}$

Ian A. McLure,* Francisco Guzman-Figueroa, and Ian L. Pegg
Department of Chemistry, The Universtly of Sheffield, Sheffleld, S3 7HF, U.K.

The density of purtiled samples of 2-butoxyethanol has been measured from 20 to $60^{\circ} \mathrm{C}$ by densimetry and pycnometry. The results are well described by $d /(g$ $\left.\mathrm{cm}^{-3}\right)=0.91694-\left(8.149 \times 10^{-4}\right)\left(t /{ }^{\circ} \mathrm{C}\right)-(5.1 \times$ $\left.10^{-7}\right)\left(t /{ }^{\circ} \mathrm{C}\right)^{2}$ with a standard deviation of $3 \times 10^{-5} \mathrm{~g} \mathrm{~cm}^{-3}$.

During an investigation of the physical properties of its aqueous mixtures (1) we have measured the density of 2butoxyethanol at 11 temperatures from 20 to $60^{\circ} \mathrm{C}$. The starting material was supplled by Cambrian Chemicals Ltd. with a quoted purity of $99 \mathrm{~mol} \%$. It was further purified by four fractionations in a stream of nitrogen in a $70-\mathrm{cm}$ glass column

